
Important formulas (learn these by heart!)

Note: if the temperature T is measured in Kelvins, but not in the energy
units, then T → kBT in all of the equations below; all quantities containing
the change of anything per temperature (e.g., heat capacity) should also be
multiplied by kB then; you should always be able to recover the Boltzmann
constant from dimensions.

Gibbs Distribution

Gibbs distribution

wi =
e−

Ei
T

Z
, (1)

the probability that a generic quantum system is in the i-th state, where the
normalisation constant

Z =
∑
i

e−
Ei
T (2)

is called the partition function of the system.
The grand-canonical (Gibbs) distribution (if the number of particles N is

variable)

wiN =
eµN−EiN

T

Z
, (3)

where iN is the i-th quantum state of a system of N particles.

Classical ideal gas

The Maxwell distribution
In principle, the Maxwell distribution does not need to be remembered,

as it follows from Gibbs distribution. It may take a little while to derive. It
is recommended that you derive it at least once on your own. If you can do
it and understand all the steps, you are good.

The probability that the absolute value of a molecule’s velocity in an ideal
gas (3D) lies in the interval (v, v + dv) is given by f(v)dv, with

f(v) = 4πv2
( m

2πT

) 3
2
e−

mv2

2T . (4)
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The probability that the velocity of a molecule in an ideal 3D gas lies in
a (3D) infinitesimal element dv of velocity space near the vector v is given
by f(v)dv, with

f(v) =
( m

2πT

) 3
2
e−

mv2

2T . (5)

Important: do not confuse Eqs. (4) and (5)!!! Eq. (5) is the probability
density of the velocity vector v, while Eq. (4) is the probability density of
the absolute value v of this velocity.

Boltzmann distribution
If an ideal gas at temperature T is exposed to an external inhomogeneous

potential U(r), then its concentration depends on the coordinate r as

n(r) = n0 exp

(
−U(r)

T

)
.

Both the Maxwell and the Boltzmann distributions follow from Gibbs
distribution.

Equation of state:

PV = NT

(in all dimensions!)
Heat capacity (3D)

1. Monoatomic gas: CV = 3
2
N

2. Diatomic gas: CV = 5
2
N

3. Each molecule consists of three atoms or more: CV = 3N

Heat capacity (of an ideal has) at constant pressure: CP = CV +N
These equations presume that the gas is classical and the molecules have

no vibrational degrees of freedom (which for realistic molecules is justified
by the fact that the quantum of vibrations is larger than room temperature)
and the moment of inertia of one atom is zero (which means that, e.g., the
quantum of rotation of a diatomic molecule about its symmetry axis is infinite
and, thus, this rotational degree of freedom is not excited).

Van der Waals equation

Van der Waals gas is a non-ideal gas, often used as a model for describing
liquid-gas phase transition. Its equation of state is given by(

P + a
N2

V 2

)
(V −Nb) = NT, (6)

a and b are constants.
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First law of thermodynamics = energy conservation law

In a quasistatic process

TdS = dE + PdV,

(Hint: in exam problems all processes are usually quasistatic;)), where dS,
dE and dV are, respectively, infinitesimal changes of entropy, internal energy
and volume.

Here TdS is the amount of heat received by the system (quasistatic pro-
cess), dE is the change of the internal energy, PdV is the amount of work.

It is extremely important to remember that in a quasistatic process the
quantity

δQ = TdS

gives the amount of heat received by the system. This may be used in a lot of
contexts, for example, if you compute the heat capacity for a given process,
defined as Cprocess =

(
δQ
dT

)
process

. For example, for a process where the volume

of a system is being kept constant, V = const, this gives CV = T
(
∂S
∂T

)
V

.

Thermodynamic potentials

F = E − TS (7)

Φ = E − TS + PV (8)

H = E + PV (9)

These are, respectively, the free energy (sometimes referred to as Helmholtz
free energy), the thermodynamic potential (sometimes referred to as Gibbs
free energy) and enthalpy.

Using the differentials of these functions and the first law of thermody-
namics, you should be able to obtain the macroscopic parameters in the
form of derivatives S = −

(
∂F
∂T

)
V

, P = −
(
∂F
∂V

)
T

, S = −
(
∂Φ
∂T

)
P

, V =
(
∂Φ
∂P

)
T

,

T =
(
∂H
∂S

)
P

, V =
(
∂H
∂P

)
S
. There is no need to remember these; they follow

from Eqs. (7)-(9) in one line.
Then, using these derivatives and the equalities like ∂2F

∂T∂V
≡ ∂2F

∂V ∂T
, we
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obtain the Maxwell’s relations(
∂P

∂T

)
V

=

(
∂S

∂V

)
T

, (10)(
∂V

∂T

)
P

= −
(
∂S

∂P

)
T

, (11)(
∂T

∂P

)
S

=

(
∂V

∂S

)
P

. (12)

Note: you do not need to remember those! They can be derived from the
definitions of the thermodynamic potentials defined above in two steps. If
you are having difficulties deriving them, practise until you can do it quickly.

A useful relationship between mutual deriva-

tives of three quantities

If one quantity Z is a function of two other quantities X and Y , Z = Z(X, Y ),
then their derivatives with respect to each other are related as(

∂X

∂Y

)
Z

(
∂Y

∂Z

)
X

(
∂Z

∂X

)
Y

= −1. (13)

This relationship is very useful in many thermodynamic problems. For ex-
ample, you may use it to compute derivates like

(
∂V
∂T

)
P

when the equation of
state is known in the form P = P (V, T ), but V cannot be easily expressed
as a function of P and T .

Important relation between microscopic and

macroscopic degrees of freedom

If you know the eigenenergies Ei of a quantum system, you may compute its

partition function as Z =
∑

i e
−Ei

T and immediately obtain the free energy
as

F = −T lnZ. (14)

If you consider the free energy F as a function of volume V and temperature
T , the equation of state may be found immediately as P = −

(
∂F
∂V

)
T

(indeed,
it’s an equation relating the pressure P , volume V and temperature T ). The
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entropy S is given by S = −
(
∂F
∂T

)
V

and may be used to compute, e.g., the
heat received by the system.

That usually gives you a way to find the equation of state of any system
whose eigenvalues you know.

Black-body radiation

Stefan-Boltzmann law

j = σT 4 (15)

is the power of the radiation emitted by a unit area of the surface of a black
body; σ is what is called the Stefan-Boltzmann constant (one is extremely
unlikely to be expected to remember its value).

Planck’s law

dEω =
V ~
π2c3

ω3

e
~ω
T − 1

dω (16)

– the energy of the radiation components of the black-body radiation with
frequencies between ω and ω+dω; V is the volume. You absolutely do NOT
need to remember this formula if you can derive it in a couple of minutes. If
you can’t derive it that quickly, practise until you can.

Bosonic and fermionic systems

f(ε) =
1

exp
(
ε−µ
T

)
+ 1

(17)

= Fermi-Dirac distribution function

nB(ε) =
1

exp
(
ε−µ
T

)
− 1

(18)

= Bose-Einstein distribution function
If the number of bosons is not conserved (phonons, photons, any quantum

excitations in solids), µ = 0.
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Super important

The number of states of a particle in a d-dimensional system in an element
dk of momentum space (assumed to be significantly larger than the scale of
spatial quantisation of momentum)

g
V dk

(2π~)d
, (19)

where g accounts for the degeneracy due to discrete degree of freedom such as
spin, valley and polarisation, and V is the volume of the system. Use it when
computing thermodynamic functions, e.g. energy, for systems of (classical or
quantum) ideal gases. For example, you may use it to derive Eq. (16) for an
ideal gas of photons.

Example. This formula is also used often when deriving the density of
states. Consider, for example, a 3D gas. The momentum volume for the
states with momenta between k and k + dk is 4πk2dk. If those momenta
correspond to the energies of particles between E and E + dE, then

ν(E)dE = g
4πk2dk

(2π~)3
, (20)

where ν(E) is the density of states and both sides of the equation give the
number of states in the energy interval dE. Taking into account that v =
dE(k)
dk

is the velocity of a particle,

ν(E) =
gk2

2π2~3v
. (21)

Here, one has to express the momentum k and the velocity v as functions of
the energy E. For the quadratic dispersion E(k) = k2

2m
, k(E) =

√
2mE and

v(E) =
√

2E/m, leading to

ν(E) =
gV m

3
2

2
1
2π2~3

√
E. (22)
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